Thyroid hormone receptor can modulate retinoic acid-mediated axis formation in frog embryogenesis.

نویسندگان

  • D E Banker
  • R N Eisenman
چکیده

Thyroid hormone receptor acts as a hormone-dependent transcriptional transactivator and as a transcriptional repressor in the absence of thyroid hormone. Specifically, thyroid hormone receptor can repress retinoic acid-induced gene expression through interactions with retinoic acid receptor. (Retinoic acid is a potent teratogen in the frog Xenopus laevis, acting at early embryonic stages to interfere with the formation of anterior structures. Endogenous retinoic acid is thought to act in normal anterior-posterior axis formation.) We have previously shown that thyroid hormone receptor RNA (alpha isotype) is expressed and polysome-associated during Xenopus embryogenesis preceding thyroid gland maturation and endogenous thyroid hormone production (D. E. Banker, J. Bigler, and R. N. Eisenman, Mol. Cell. Biol. 11:5079-5089, 1991). To determine whether thyroid hormone receptor might influence the effects of retinoic acid in early frog development, we have examined the results of ectopic thyroid hormone receptor expression on retinoic acid teratogenesis. We demonstrate that microinjections of full-length thyroid hormone receptor RNA protect injected embryos from retinoic acid teratogenesis. DNA binding is apparently essential to this protective function, as truncated thyroid hormone receptors, lacking DNA-binding domains but including hormone-binding and dimerization domains, do not protect from retinoic acid. We have shown that microinjections of these dominant-interfering thyroid hormone receptors, as well as anti-thyroid hormone receptor antibodies, increase retinoic acid teratogenesis in injected embryos, presumably by inactivating endogenous thyroid hormone receptor. This finding suggests that endogenous thyroid hormone receptors may act to limit retinoic acid sensitivity. On the other hand, after thyroid hormone treatment, ectopic thyroid hormone receptor mediates teratogenesis that is indistinguishable from the dorsoanterior deficiencies produced in retinoic acid teratogenesis. The previously characterized retinoic acid-responsive gene, Xhox.lab2, can be induced by thyroid hormone in embryos ectopically expressing thyroid hormone receptor and is less responsive to retinoic acid in such embryos. The fact that both thyroid hormone and retinoic acid can affect overlapping gene expression pathways to produce abnormal embryonic axes and can regulate the same early-expressed gene suggests a model in which thyroid hormone receptor blocks retinoic acid receptor-mediated teratogenesis by directly repressing retinoic acid-responsive genes.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Development of neuroendocrine components of the thyroid axis in the direct-developing frog Eleutherodactylus coqui: formation of the median eminence and onset of pituitary TSH production.

Direct-developing frogs lack, wholly or in part, a wide range of larval features found in metamorphosing species and form adult-specific features precociously, during embryogenesis. Most information on thyroid regulation of direct development relies on hormone manipulations; the ontogeny of many thyroid axis components has not been fully described. This analysis examines differentiation of the ...

متن کامل

Nuclear receptors modulate the interaction of Sp1 and GC-rich DNA via ternary complex formation.

Binding sites for transcription factor Sp1 have been implicated in the transcriptional regulation of several genes by hormones or vitamins, and here we show that a GC-rich element contributes to the retinoic acid response of the interleukin 1beta promoter. To explain such observations, it has been proposed that nuclear receptors can interact with Sp1 bound to GC-rich DNA. However, evidence supp...

متن کامل

Thyroid Hormone Regulation of Gene Expression in Primary Cerebrocortical Cells: Role of Thyroid Hormone Receptor Subtypes and Interactions with Retinoic Acid and Glucocorticoids

The effects of thyroid hormone on brain development and function are largely mediated by the binding of 3,5,3'-triiodo-L-thyronine (T3) to its nuclear receptors (TR) to regulate positively or negatively gene expression. We have analyzed by quantitative polymerase chain reaction the effect of T3 on primary cultured cells from the embryonic mouse cerebral cortex, on the expression of Hr, Klf9, Sh...

متن کامل

Recombinant thyroid hormone receptor and retinoid X receptor stimulate ligand-dependent transcription in vitro.

The thyroid hormone and retinoid X receptors form a heterodimer with each other and mediate thyroid hormone (T3)-dependent transcription. Retinoid X receptor, in addition, forms a homodimer and mediates 9-cis-retinoic acid-dependent transcription. Here, recombinant thyroid hormone receptor and recombinant retinoid X receptor beta expressed from baculovirus vectors have been studied for ligand-m...

متن کامل

A thyroid hormone receptor-dependent glucocorticoid induction.

Glucocorticoid and thyroid hormones exert their effects in many body tissues by binding to their respective receptors. The search for possible cross-talking mechanisms in overlapping target cells led to the discovery of synergism between a thyroid hormone receptor-binding site and a cryptic glucocorticoid-responsive element. Glucocorticoid responsiveness could only be detected in the presence o...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Molecular and cellular biology

دوره 13 12  شماره 

صفحات  -

تاریخ انتشار 1993